1st GRADE MATH PRIORITY STANDARDS- "I CAN..."

Operations and Algebraic Thinking

- I can solve addition and subtraction word problems within 20 using different strategies (ex. Objects, drawings, equations)
 (1.OA.1)
- I can solve word problems where I have to add three whole numbers whose sum is less than or equal to 20. (1.OA.2)
- I can use fact families to help me solve addition problems. (commutative property) (1.OA.3)
- I can use addition facts I know well to help me solve problems with more than two numbers (associative property, make 10). (1.OA.3)
- I can understand that counting up is like adding and counting down is like subtracting. (1.OA,5)
- I can add and subtract within 20 using different strategies (ex. counting on, making ten, decomposing a number, etc,) (1.OA.6)

Number and Operations in Base Ten

- I can count to 120 starting at any number less than 120. (1.NBT.1)
- I can read and write my numbers to show how many objects are in a group of up to 120. (1.NBT.1)
- I can tell how many tens and how many ones are in any two-digit number. (1.NBT.2)
- I can compare two digit numbers using <, =, and > because I understand tens and ones. (1.NBT.3)
- I can use different math strategies to help me solve and explain addition problems within 100. (1.NBT.4)
- I can understand that adding two-digit numbers means I add the ones and then the tens and sometimes have to make a group of ten from the ones. (1.NBT.4)
- I can use different strategies to subtract multiples of 10 (10-90) from numbers under 100, write the matching number sentence and explain my strategy. (1.NBT.6)

Measurement and Data

Geometry

- I can put three objects in order from longest to shortest and compare their lengths. (1.MD.1)
- I can tell the length of an object using whole numbers. (1.MD.2)
- I can show that I understand how to measure something by using a smaller object as a measurement tool. (1.MD.2)
- I can organize, represent, ask questions and answer questions about data with up to three categories. (1.MD.4)
- I can understand and tell about the parts that make different shapes unique. (1.G.1)
- I can create two-dimensional shapes. (rectangles, squares, trapezoids, triangles, half-circles and quarter circles) (1.G.2)
- I can create three-dimensional shapes. (cubes, right rectangular prisms, right circular cones and right circular cylinders)
 (1.G.2)
- I can use two and three dimensional shapes to create new shapes. (1.G.2)
- I can break circles and rectangles into two and four equal parts and understand and use the words whole, halves, fourths and quarters to talk about them. (1.G.3)

Fluency

• I can fluently add and subtract within 10. (1.OA.6)

8 STANDARDS FOR MATHEMATICAL PRACTICE: GRADES K- 12

Mathematical **Practice**

How a student can use the standard. Student "I can" statements.

How a parent or caregiver can support the standard.

Make sense of problems persevere in

- · I can make a plan for solving the problem.
- . I can keep going even when it is difficult.
- · I can check if my answer is reasonable.
- I can solve it in another way to check my answer.
- I can visualise the problem to help me make a plan to solve it.
- I will try another strategy if my first one does not work.

Reason abstractly and guantitatively

- problem.
- · I can think about the relationships between the numbers in the problem.
- · I can think about what each number or variable in the problem represents.
- . I can show the problem in ways that are not the standard algorithm (symbols, pictures, manipulatives, etc.)
- I can explain my thinking.

- I can use numbers and words to help make sense of the

- Construct

viable arguments and critique the reasoning of others.

- · I can ask questions to clarify my understanding.
- · I can make connections to other strategies.
- · I can communicate to others what I am thinking and why.
- · I can justify my answer/conclusion.
- I can consider the thinking of other students.
- · I can use mathematical language and evidence to support my answer.

- Allow time for students to think when asking questions.
- . "What plan can you make to solve this problem?"
- . "What information is in the problem and what are you trying to figure out?"
- For word problems encourage them to explain what it is about without considering the math or how to solve it first.
- Encourage the math to become about the process/students thinking rather than the one right answer.
- "Why do you think that might be the answer?"
- "Can you explain what the numbers or variables in the problem" mean?"
- "How did you decide to use this operation or strategy?"
- · Ask questions that help lead students to understanding.
- · Encourage critical thinking and reasoning.
- Encourage students to explain their thinking even if the answer is not correct.
- "How did you get your answer?"
- · "How do you know that your answer is correct?"
- Ask clarifying questions.
- · Establish an environment where the student is not afraid to get the answer incorrect as long as they can explain their reasoning.

Model with

- · I can relate mathematics to real life situations.
- I can use pictures, words, objects, or symbols to solve problems.
- I can use different manipulatives (ex. number lines, arrays, base 10 blocks, algebra tiles, etc.) to represent and solve my problem.
- What model can you use to help you solve this problem?"
- "Can you visualize what is happening in this problem?"
- Point out where math is in real life situations.

8 STANDARDS FOR MATHEMATICAL PRACTICE: GRADES K- 12

Mathematical Practice

How a student can use the standard. Student "I can" statements.

How a parent or caregiver can support the standard.

"Is there a tool that might help you solve this problem?"

. "What information do you have/know that might help you solve

. "Why did you choose this tool to help you solve this problem?"

"Before you solve the problem can you estimate the answer?"

Use appropriate tools strategically.

- I can select and use math tools such as number lines, calculators, objects, tables, graphs, words, manipulatives, etc. to help me solve the problem.
- · I can explain why I chose a specific tool to solve the problem.
- · I can estimate to help me solve the problem.

 Encourage them to find everyday items to help solve the problem.

this problem?"

Attend to precision.

- . I always think about whether my answer is reasonable.
- I am able to communicate to others using mathematics vocabulary so that they understand what I am doing.
- · I am precise in my calculations.
- · I use appropriate symbols and units of measure.

- "How do you know that your solution is reasonable?"
- "What units of measure are you using?"
- · Encourage students to use mathematical language.
- Encourage students to take their time and always have a reason for their actions.
- Encourage students to explain exactly what they do and do not understand. (Discourage the phrase, "I do not get any of it")

Look for and make use of structure.

- I look for patterns that can help me solve a problem.
- I can relate other problems that I have solved previously to help me solve new problems.
- · I try to connect mathematical ideas.

- "What are some other problems that are similar to this one?"
- "Do you see any patterns/similarities in the problems you have been solving?"

Look for and express regularity in repeated reasoning.

- I can notice when calculations are repeated and use these ideas to create a strategy.
- · I can create rules for patterns.
- · I can determine if my answer is reasonable..

- Encourage students to create rules for patterns they observe and explore if they are always true.
- · "What do you think is happening in this problem?"
- "What shortcut can you think of that will always work for these kinds of problems?"